Custom Search

Wednesday, July 20, 2011

DNA Helicase: Function, Structural Features And Superfamilies

DNA helicase is an enzyme that aids in DNA synthesis by 'unzipping' the two strands of a DNA helix so that DNA polymerase can access the DNA to add nucleotides and effect copying.


Many cellular processes (DNA replication, RNA transcription, DNA recombination, DNA repair, Ribosome biogenesis) involve the separation of nucleic acid strands. Helicases are often utilized to separate strands of a DNA double helix or a self-annealed RNA molecule using the energy from ATP or GTP hydrolysis. They move incrementally along one nucleic acid strand of the duplex with a directionality specific to each particular enzyme. There are many helicases (14 confirmed in E. coli, 24 in human cells) resulting from the great variety of processes in which strand separation must be catalyzed.

Function
Helicases adopt different structures and oligomerization states. Whereas DnaB-like helicases unwind DNA as donut shaped hexamers, other enzymes have been shown to be active as monomers or dimers. Recent studies showed that helicases do not merely wait passively for the fork to widen, but play an active role in forcing the fork to open, thus "it is an active unwinding motor". However, the unwinding is much faster in cells than in the test tube, so "accessory proteins are helping the helicase out by destabilizing the fork junction".

Structural features

The common function of helicases accounts for the fact that they display a certain degree of amino acid sequence homology; they all possess common sequence motifs located in the interior of their primary sequence. These are thought to be specifically involved in ATP binding, ATP hydrolysis and translocation on the nucleic acid substrate. The variable portion of the amino acid sequence is related to the specific features of each helicase.

Based on the presence of defined helicase motifs, it is possible to attribute a putative helicase activity to a given protein, though the presence of a motif does not confirm the protein as a helicase. Conserved motifs do, however, support an evolutionary homology among enzymes. Based on the presence and the form of helicase motifs, helicases have been separated in 4 superfamilies and 2 smaller families. Some members of these families are indicated, with the organism from which they are extracted, and their function.


Superfamilies

  • Superfamily I: UvrD (E. coli, DNA repair), Rep (E. coli, DNA replication), PcrA (Staphylococcus aureus, Bacillus anthracis and Bacillus cereus, regulation of recombination by displacing RecA from DNA and inhibiting RecA-mediated DNA strand exchange), Dda (bacteriophage T4, replication initiation).

  • Superfamily II: RecQ (E. coli, DNA repair), eIF4A (Baker's Yeast, RNA translation), WRN (human, DNA repair), NS3 (Hepatitis C virus, replication). TRCF (Mfd) (E.coli, transcription-repair coupling factor).

  • Superfamily III: LTag (Simian Virus 40, replication), E1 (human papillomavirus, replication), Rep (Adeno-Associated Virus, replication, site-specific integration, virion packaging).

  • DnaB-like family: DnaB (E. coli, replication), gp41 (bacteriophage T4, DNA replication),T7gp4 (bacteriophage T7, DNA replication).

  • Rho-like family: Rho (E. coli, Transcription termination factor ).

Thursday, July 14, 2011

Lecture on Stem Cells and the End of Aging

Human tissues vary in their ability to heal and regenerate. The nervous system has weak powers of regeneration, while the skin is quick to make new cells for repair. Mammalian muscle cells are intermediate in their ability to regenerate. Human muscle can regenerate in response to minor wounds and normal wear and tear, but humans will not grow a new bicep, for example, in response to amputation. The heart is the most important muscle in the body and yet has feeble regenerative capabilities. Research into the wholesale production of new replacement organs and limbs is in its infancy, but research into enhancing normal levels of regeneration is progressing rapidly. Recent discoveries concerning the location and characteristics of adult stem cells and the signals that wounded tissue produces to activate stem cells have increased our understanding of regeneration. Insulin-like growth factor 1 (IGF1) is an example of an important stem cell communication molecule. If the activity of the growth factor is experimentally enhanced, muscle regeneration improves.